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Experience with NIF, and evidence from the ignition
campaign, are being used to define a path for LIFE

Similar:

— Physical size

— Laser energy

— Target performance

— Concept of operations (LRUs, ...)
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Utilities (CEO/VP level)

* Pinnacle West Capital
Corporation

« PG&E Corporation
 MidAmerican Energy Company
 We Energies

* Nuclear Management
Company, LLC

e Constellation Energy
 Dominion Generation
 Exelon Generation Company
» Southern California Edison

Plant Primary Criteria (partial list)

Cost of electricity

Rate and cost of build

Licensing simplicity

Reliability, Availability, Maintainability,
Inspectability (RAMI)

High capacity credit & capacity load factor

Predictable shutdown and quick restart

Protection of capital investment

Meet urban environmental and safety
standards (minimize grid impact)

Public acceptability

Timely delivery

This can drive a very different design solution and delivery path
to conventional approaches based on technical performance alone




Modeling of US grid shows early market entry is

_key to the impact of fusion energy

Based on U.S. Energy Information Agency’s Annual Energy
Outlook (2009), Retirement of Plants
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Modeling of US grid shows early market entry is
key to the impact of fusion energy

Carbon Emission Avoidance to 2100
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U.S. electricity generation currently accounts for ~2.4 GT CO,/yr
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An integrated, self-consistent plant design for LIFE
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* Modular
 Factory built units
« RAMI 2 Annular Laser Bays Tritium Plant
* Vendor readiness
e Impact on cost

* Obviate need for
advanced materials

Power Conversion
Building

\ Engine

Maintenance
Building
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Replaceable chamber, decoupled
from the vacuum and optics

Tubular, gas protected chamber
using conventional materials

Beam-in-a-box (~10m long) to
allow hot-swap during operations

+ NIF-1110-20448s2

Dual neutron pinhole to allow
personnel in laser bays




LIFE Iaser desig
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Capital Cost

Diode vendors now quoting 2-3¢/W

Supply chain

Competitive market, multiple end-users

Time to market

Conventional glass technology

Reliability

3w fluence = 1/3 NIF

Availability

Hot-swap beam box (~10m long)

Maintainability

Factory build and repair

Performance specification

Set by NIF demonstrations
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The point design uses a modular laser system,
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The design achieves high performance at 3x lower
fluence than NIF (3®), and meets economic goals

Tripler output

3o =4.3kJ
Contrast ~ 4.5%
Peak, Ref ~1. 31 o

> UKk Output Farfield
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'\Q L~ Box 500 Ve it #ngmnn mm
» Efficient and cost effective supply chain T
« Offsite beamline factory ]
* Truck-shippable 1w beamline ol 1
« Low-overhead installation : e
— Kinematic placement T

— Minimal interfaces
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« Commercial solid state laser systems ~ 10,000 hrs

 Modular design allows realistic performance goals for a high power system
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The LIFE “chamber” is a network of horizontal tubes,

 Modular design. Truck-

built

factory-

shippable

 Wall survival 2 4 years
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e Very low Tritium content

s g in the engine

— 10’

— 100’s g in the separation

and storage systems

* Very low clearing ratio (~1%)
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Fusion chamber

Vacuum chamber
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Transport of ~700MT unit
(cask not shown) to the hot cell
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New system installed, allowing |
remote maintenance / disassembly |
of the old unit during operations §
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: because chamber modularity results in
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Benefit of Rapid First Wall Change Out on Engine
1.000

0.995 SiC
0.990
0.985

0.980 First Wall Change Out
0.975 y. | Time 4 weeks

ODS

0.970
0.965

Availability

First Wall Change Out
0.960 | Time 1 week

0.955
0.950

0 2 4 6 8 10
First Wall Life in Years

ﬁ Calculated wall lifetime (LIFE.2)
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Economic factors

| Capital cost
_Availability

Reliability
Maintainability

: Fuel / consumable costs

Licensin_g

: Su_ppl_y chain

Environmental cost
Time to market

Monte Carlo availability

Technology investment impact
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Cost of Electricity less than coal for CO, > $4OIMT

and less than aas for > CaON/MT Could be 509% bett
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Outline delivery schedule, consistent with NIF experience and
likely licensing timescales — meets the Primary Criteria
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Development Path -

LIFE.2 Pure Fusion

NIF LIFE.1

Full-system demonstration, “LIFE.1” in 2020s

Conservative design maximizing use of
near turn solutions

Fully integrated development and vendor
readiness program

Steady state, integrated fusion operations
(~500 MW,,)

Define the plant availability growth
program

Materials / structure qualification for
commercial plant

Commercial GWe plants, “LIFE.2”
from 2030s

* Deliver baseload power to grid at
relevant size (~ 1GWe)

Uses systems and materials
qualified on LIFE.1

Defines capital and operating costs
for rollout
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» Consideration of end-user requirements must drive IFE development

* Technologically, IFE success will depend on our ability to integrate
interdependent sub-systems

* Future development must be tackled as part of a facility delivery project

* LIFE provides a solution consistent with 2030’s commercial delivery:
— Designed to meet the Utilities’ Primary Criteria
— NIF provides the at-scale physics evidence
— LRU approach protects capital investment, and enables high availability

— Licensing approval managed as an integral part of the process

* Public/private delivery partnership, and nation-wide focused effort is essential
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